# Step 1: Install and load the deSolve package library(deSolve) # Step 2: Prepare your data in R or import it from a CSV file data <- data.frame( time = c(0, 1, 2, 3, 4), variable = c(1, 2, 3, 4, 5) ) # Step 3: Define your model function, which includes the time-varying variable model <- function(t, y, parameters, data) { k <- parameters["k"] variable_data <- approxfun(data$time, data$variable)(t) dydt <- -k * y + variable_data list(dydt) } # Step 4: Set up the initial conditions, time points, and parameters y0 <- 0 t <- seq(0, max(data$time), length.out = 100) parameters <- list(k = 0.1) # Decay constant (you can adjust this value) # Step 5: Solve the ODE using ode function from deSolve solution <- ode(y = y0, times = t, func = model, parms = parameters, data = data) # Step 6: Plot the results plot(data$time, data$variable, type = "b", pch = 16, col = "blue", xlab = "Time", ylab = "Variable", main = "Dissolve Model") lines(solution, col = "red", lwd = 2) legend("topleft", legend = c("Data", "Model"), col = c("blue", "red"), lwd = 2, pch = 16)