library(ggplot2) library(deSolve) #df <- read.csv("dataWEEK.csv",col.names=c("DateTime", "DB", "RH","DP","P","WIND","WIND-DIR","SUN","RAIN","START")) #df=df[complete.cases(df), ] #df$DateTime=as.Date(df$DateTime) #df$DB=(df$DB/10) # #head(df) parms = c(qv = 54, pa = 1.204, Ca = 1006, V = 3000) model <- function(time, Tr,Text, parms) { df <- read.csv("dataWEEK.csv",col.names=c("DateTime", "DB", "RH","DP","P","WIND","WIND-DIR","SUN","RAIN","START")) df=df[complete.cases(df), ] df$DateTime=as.Date(df$DateTime) df$DB=(df$DB/10) #Text=parms[5] dTr <- -(parms[1] * parms[2] * parms[3] * (Tr - Text)) / (parms[4] * parms[2] * parms[3]) dText = df$DB list(dTr,Text) } solution <- ode(y = 20, times =as.numeric(rownames(df)), func = model, parms = parms) print(solution) solution=as.data.frame(solution) names(solution) <- c("time", "Tr","Text") head(solution) gg_plot <- ggplot(data = solution, aes(x = time, y = Tr)) + geom_line() + geom_line(aes(x = time, y = Text), color = "blue")+ labs(x = "Time Steps", y = "Room Temperature (Tr)") + ggtitle("Room Temperature Over Time") ggsave(filename = "room_temperature_plot.pdf", plot = gg_plot)