# Load CSV file options(width = 150) #df <- read.csv("data.csv",col.names=c("DateTime", "DB", "RH","DP","P","WIND","WIND-DIR","SUN","RAIN","START")) #df=remove_empty(df, which = c("rows"), cutoff = 1, quiet = TRUE) #sum(is.na(df)) #df=df[complete.cases(df), ] #nrow(df) #print(df[54646:54650,]) #df=df[df$DB != FALSE, ] #df=na.omit(df) # Print the first few rows of the data library(psychrolib) SetUnitSystem("SI") #constants SHC=1.026 # specif heat capciaty of air LHE=2450 #latent heat of evap SmallP=20 OccGs=80 OccGl=60 Area=27 Occupants=2 Qsp=Area*SmallP P=2 A=18 # Area of room H=3.7 #Height of room V=A*H #Volueme of room S=361 # Surface area of external envelope I=0.2 RM_DB=24 RM_RH=0.5 RM_G=GetHumRatioFromRelHum(RM_DB, RM_RH, P) MIN_SUPPLY_DB=14 MaxQs=1.520 # peak Qs=1.0 Ql=0.123 M=MaxQs/(SHC*(RM_DB-MIN_SUPPLY_DB)) SUPPLY_DB=(M*SHC*RM_DB-Qs)/(M*SHC) print(M) print(SUPPLY_DB) P=101325 OA_DB=35 OA_WB=20 OA_G=GetHumRatioFromTWetBulb(OA_DB, OA_WB, P) E_DB=0.9 HRS_S_DB=E_DB*RM_DB-OA_DB*(E_DB-1) E_G=0.5 HRS_S_G=E_G*RM_G-OA_G*(E_G-1) #print(HRS_S_G) #print(HRS_S_DB) CHW_F_DB=7 CHW_R_DB=12 CHW_AVE_DB=(CHW_F_DB+CHW_R_DB)/2 CHW_AVE_G=GetHumRatioFromTDewPoint(CHW_AVE_DB, P) CF=0.85 CC_DB=CHW_AVE_DB+((HRS_S_DB-CHW_AVE_DB)*(1-CF)) CC_G=CHW_AVE_G+((HRS_S_G-CHW_AVE_G)*(1-CF)) FAN_GAIN_DB=1 SUPPLY_DB=CC_DB+FAN_GAIN_DB SUPPLY_G=CC_G RM_DB_RISE=RM_DB-SUPPLY_DB RM_G_RISE=RM_G-SUPPLY_G cat("room g rise",RM_G_RISE,"\n") SHC=1.026 # specif heat capciaty of air LHE=2450 #latent heat of evap RR=(SHC*(RM_DB_RISE))/((SHC*(RM_DB_RISE))+(LHE*(RM_G_RISE))) cat("Room ratio", RR, "\n") cat("supply temp",SUPPLY_DB,"\n") #y=RM_G_RISE/RM_DB_RISE #print(y) #print(CC_DB) #print(CC_G)