# Load CSV file options(width = 150) df <- read.csv("data.csv",col.names=c("DateTime", "DB", "RH","DP","P","WIND","WIND-DIR","SUN","RAIN","START")) #df=remove_empty(df, which = c("rows"), cutoff = 1, quiet = TRUE) sum(is.na(df)) df=df[complete.cases(df), ] nrow(df) #print(df[54646:54650,]) #df=df[df$DB != FALSE, ] #df=na.omit(df) # Print the first few rows of the data library(psychrolib) SetUnitSystem("SI") df$DB=(df$DB/10) df$RH=(df$RH/100) df$P=(df$P*100) #head((is.na(df)),n=100) df=df[50000:nrow(df),] sum(is.na(df)) #head(df) df$HR=GetHumRatioFromRelHum(df$DB, df$RH,df$P) df$H=GetMoistAirEnthalpy(df$DB, df$HR) #df$a = quantile(df$H, probs = 0.9999) #df$b = quantile(df$DB, probs =0.9999) #top=which(df$a & df$b) maxRH=max(df$RH) df$pRHdiff=abs((maxRH-df$RH)/((maxRH+df$RH)/2)) maxDB=max(df$DB) df$pDBdiff=abs((maxDB-df$DB)/((maxDB+df$DB)/2)) designH=quantile(df$H,probs=0.9999) df$pHdiff=abs((designH-df$H)/((designH+df$H)/2)) df$score=sqrt(((df$pHdiff)^2)+((df$pRHdiff)^2)+((df$pDBdiff)^2)) print(designH) print(maxRH) print(maxDB) #top = df[df$H > quantile(df$H, probs =0.99999),] tail(df[order(df$score, decreasing=TRUE),],n=25) #df <- df[order(df$H), ] #tail(df,n=(411367/400))